In the context of a rapidly shifting global landscape on climate change, including the June 2017 announcement that the United States would start the process to formally withdraw from the Paris Climate Agreement, the role of the private sector in a low-carbon future is more pronounced than ever. The design of the built environment is a crucial part of that future.

Therefore, all progress we collectively make toward meeting our 2030 Commitment targets is a step in the right direction. As the 2016 numbers show, we’ve seen growth in the program and progress toward goals, though not yet at the pace required by the urgency of climate change. This report provides a snapshot of what we’ve accomplished, while also demonstrating the need to accelerate our efforts.

The program is growing

In 2016, 175 firms—representing sole practitioners to companies with more than 1,000 employees—demonstrated their commitment to reaching our collective goals by aggregating and sharing their project data, a 15% increase in reporting firms from 2015. Additionally, 53 new firms joined the Commitment, bringing the overall number of signatories to more than 400.

Our goals are ambitious – but achievable

The average predicted energy use intensity (pEUI) percent savings increased again this year, climbing to 42% from 38% in 2015. While more work is needed to reach the current overall target of 70% or more, there are firms and projects demonstrating that this is possible: In 2016, six firms reported an overall pEUI reduction of 70% or greater for their portfolio, and across the board, 331 individual projects representing a variety of sizes and use types also met this ambitious target.

The impact is significant

Taken together, the potential energy savings from 2016 projects represent approximately 16.7 million metric tons of greenhouse gas emissions, the equivalent of running almost five coal-fired power plants or powering 1.76 million homes in a year*. These designed project savings represent progress for our environment—and good news for our economy. In the U.S. alone, 2016 projects as designed represent a projected annual cost savings of approximately $1.43 billion**.

Energy modeling is key

Our numbers continue to demonstrate that energy modeling is an essential component of success. The numbers also indicate that we must better understand the strategies, tools, and resources necessary to integrate energy modeling into the design culture of architecture firms.

As we look to 2017 and beyond, the importance of voluntary efforts like the 2030 Commitment will remain critical catalysts for a carbon-neutral future, helping to reduce the threat of climate change facing future generations.

To learn more about the 2030 Commitment, including how to become a signatory, as well as upcoming in-depth reports and case studies on the 2016 numbers, visit the 2030 Commitment page on aia.org.

* EPA Greenhouse Gas Equivalencies Calculator
** Calculated using U.S. average commercial rates for electricity and natural gas for all project types

AIA 2030 Commitment Working Group & Co-chairs
Greg Mella, FAIA–Smithgroup JJR
Heather Gayle Holdridge–Lake | Flato Architects
Projected CO2 emissions reduction in 2016 projects

16.7 million MT CO\textsubscript{2}e/yr

That’s equivalent to removing 4.9 coal-fired power plants*.

The built environment is associated with the majority of human-caused carbon emissions, giving architects significant influence in the response to climate change. The projected reductions in carbon emissions from the 2016 projects in the 2030 Commitment demonstrate just how powerful the impact of architects and design choices can be.

The careful observer will note that this is less than was reported in the 2015 annual report. This is due to a more precise methodology used this year that accounted for location and use type. Using the same methodology applied to 2015 data, the carbon reduction would be 15.1 million MT CO\textsubscript{2}e/yr.
The energy reduction projections from 2016 projects aren’t only good for the environment – they are good for the economy as well. Based on the average U.S. commercial rates for electricity and natural gas, the projected carbon reductions translate into a potential annual savings of $1.4 billion for domestic projects, and $3.1 billion when considering domestic and international projects together.

* Design energy projected cost savings calculation: 1) The project use type was used to determine the percentage of electricity and natural gas for each project in the United States and Canada [1]; 2) the whole building and interior only project projected energy savings were totaled; 3) the electricity and natural gas design energy savings were multiplied by the U.S. average commercial rate for electricity [2] and natural gas [3].

$1.4B in the U.S.

$3.1B U.S. & global
Every improvement makes a difference

For every 100 kBtu of electricity saved, just over 15 kg of CO₂ equivalent emissions are eliminated. The energy cost savings are: $4.11 for a residential building, $3.34 for a commercial building, and $2.15 for an industrial building.

For every 100 kBtu of natural gas saved, 5.3 kg of CO₂ equivalent emissions are eliminated, with cost savings from $1.04 to $0.39, depending on building type.

*Using 56% electricity and 44% natural gas
Ambitious, but achievable, goals

In 2006 Architecture2030 set an ambitious road map to achieve carbon neutrality in new buildings by 2030 with incremental targets increasing every 5 years. Since 2009 the AIA 2030 Commitment has provided an actionable tool to track progress.

A key challenge facing the 2030 Commitment is how to accelerate our progress to meet the target, especially as firms and projects demonstrate that meeting the target is possible.

6 firms reported an average pEUI savings of 70% or greater across their portfolio.

16 firms reported portfolio average pEUI savings between 60 and 70%.

331 projects met the target of at least 70% pEUI savings—and over a third of those projects were 100,000 sq.ft. or greater.
Growth in firm engagement

15% increase in reporting firms

Over 400 firms have signed the AIA 2030 Commitment
Who’s participating - AIA 2030 Commitment engaged signatories

5 + years reporting

Adrian Smith + Gordon Gill Architecture
Albert Kahn Associates
Alliance (formerly Architectural Alliance)
Ayers/Saint/Gross
Bergmeyer Associates
BNAI Architects
Bora Architects
CallisonRTKL
CannonDesign
Cooper Carry
Cunningham | Qul Architects
DLR Group
ENRD
English + Associates Architects, Inc.
Epojen
Eekow-Dunne+Rappel
EYP
FXFOWLE
Genser
GGLG
Goettch Partners
Grusom Smith and Partners
Hahnfeld Hoffer Stanford
Harley Ellis Devereaux
High Plane
HKS
HOK
Hard Cooper Macht
IKM Incorporated
Jones Studio, Inc.
Kiper Architects and Planning
KMD Architects
L.M. Holder III, FAIA
Lanefilto Architects
Landen Brice Baker Architects
Laddey Mayhurn Stacy Architects
Legat Architects
Lentner Architects LA, Inc.
Little Diversified Architectural Consulting
Lord, Aeck & Sargent
LPA, Inc.
LSPP
Mahin
Mazzetti Nosh Lipsey Barth
Mithun
Mosley Architects
NBBJ
Orcault Winslow
Pace
Paul Parner + Associates Architects
Payette Associates, Inc.
Paz Cobb Fixed & Partners Architects LLC
Perkins+Wili
Pickard Chilton
Quattrocchi Reck Architects
Queen Evans Architects
RVA Architects, Inc.
SENA Sturz Architects, Ltd.
SHIF Leading Design
SmithGroupJJR
Solomon Cordwell Buenz
SOM (Skidmore, Owings & Merrill) LLP
STUDIO Architects
The Beek Group
The Miller Hull Partnership
The Sheppard Partnership, LLC
The SLAM Collaborative
TLC Engineering for Architecture
TRG Jung | Brannen
VALANDO Design, Inc.
Vanderweil Engineers
Walker Thompson
Wight & Company
William Raas Associates, Architects, Inc.
WLC Architects, Inc.
Yost Grube Hall Architecture
ZeroEnergy Design
ZGF

3-4 years reporting

Ann Baha Architects
ARC-Architectural Resources Cambridge, Inc.
Archinemas
Asheer Tan
Bard, Ravi + Athanas Consulting Engineers LLC
Braun and Stoelzl (formerly Braun-Yehuda Architects, PC)
Burns Haidcomplex Consulting Engineers Inc.
BWSR
Coolarch Architecture Inc.
Cunningham Group Architecture, Inc.
Datner Architects
Davies Partnership Architects
Dawberry
DGNJ Associates, Inc.
DWL Architects + Planners
Ellerbe Beale
Engberg Anderson
Farr Associates
Goody Clancy
Guzon Design
GWPP, Inc.: Architects
Hacker (Formerly known as TWA Architecture)
Hartshorne Plunkard Architecture
HSM, Inc.
Helix Architecture + Design
HMC Architects
Jacobe Global Buildings
Knueck-Seiden Architects
Leers Weinzapfel Associates
mode associates
MVRDV
OPN Architects
Oxerland Partners
Perkins Eastman
RB & B Architects, Inc.
Sakaki
Shepkey Bullfinch
Smith Seckman Reid
SMMA
Wilklowthy Engineering LLC
Wilson Architects
WRNS Studio

1-2 years reporting

Ankor Moisan
BAR Architects
Batyk Architects
Batkin Cywinski Jackson
Beall Hanem
Boulevard Associates
Brunner + Cott
CBT Architects, INC
Clark Nexsen
CLO Architects
Cochran
David Baker
DMella Shaffer
DRAO architecture + urban design (formerly Davisson
Architecture + Urban Design)
green|spaces
Handel Architects
HarbomnKornberg Architects
Hartung
Hennebery Design
HGA Architects & Engineers
HMFH Architects
JAHN
Lionel
McGinnisian Architects
Miller Dyre Spears
Moody Nolan
NADAAA

Page 10
Who’s participating—AIA 2030 Commitment new signatories

2016 Signatories

4240 Architecture Inc.
AC Martin Partners, Inc.
Aecis Arkitektura
Architecture is Fun, Inc.
Arkin Tilt Architects
Arwoodstreet
Bermannet
Boehr Blinder Belle
Blackbird Architects
BLGY Inc.
BRIGGS + SCAAPA
Breuer Day Multine Dayeburg
CTA Architects Engineers
Dale Wells Architecture
Dekker Perich Sabatini
Dore & Whittier
Elizabeth Eason Architecture LLC
Elius Marshall
Emerson Design
Feldman Architecture
Finegold Alexander Architects
Ful Architects
GarthShaw
GBD Architects Incorporated
Grimm + Parker
GSBS Architects
Holly & Smith Architects
ICON Architecture
Interface Engineering-Chicago
INVISION
Jor Greene, AIA + CPHC
LHEI Inc.
Limbacher & Godfrey Architects
Maryann Thompson Architects
Murphy Burnham & Buttrick
Neumann Monson
Office for Local Architecture (OLA)
Perry Dean Rogers Partners Architects
Ryall Porter Seridan Architects
Sheldon Pennoyer Architects
Sink Comito Diduck
Spector Group
Stanley Studios
Stephen Tilly, Architect
TBDA
The Design Alliance
The Green Engineer Inc.
TK Architecture
Tsuboosaki Tsuboosaki Inc.
Topolen-Peir Architect
VMDO Architects
WDG
Wiemann Lampshe Architects

BRISTOL COMMUNITY COLLEGE
While both overall reported project area (GSF) and the total number of projects continued to grow, the number of projects increased at a greater rate. This reflects an increased reporting of smaller-size projects, with the median size of whole building projects moving from 109k GSF in 2015 to 90k GSF in 2016.

Data for total number of projects is unavailable for years prior to 2011
Whole building versus interior projects

33% growth in overall number of project reported in 2016, while interior-only projects increased by 48%.

Whole building projects: 7,348

Interior only projects: 6,604
Growth in number of countries

growth in number of countries represented, with projects representing 94 countries reported in 2016

International projects tend to be much larger than domestic projects. While only 10% of all reported projects were international, these projects represent 42% of the overall GSF.
An ambitious pEUI% reduction target

We are making important progress, but must accelerate our pace in order to meet our goals.

In whole building projects for 2016, pEUI savings averaged 42%—a continuation of the positive trend we’ve seen over the past several years, but still short of 70% target.

pEUI% reduction as compared to the Architecture2030 target
Overall, projects are coming close to meeting the 2030 Commitment target of 25% savings over ASHRAE 90.1-2007 baselines—which is not surprising, given industry improvements in efficient lighting options such as LED and the increased integration of performance-based interior design strategies, including using daylight sensors and utilizing task and ambient lighting. Code has also been a critical driver for making these improvements. Going forward, architects can drive additional improvements through advocating for further code improvements, embracing performance-based design strategies in all project types, and continuing to make calculating LPD values a priority in project reporting.

*Because of certain reporting discrepancies, the 21% projected savings reflects an adjustment to code minimum LPD % savings within eight frequently used energy design codes in the office use type, encompassing the majority of projects. The 2030 Commitment will continue to examine methods to improve reporting in this area.
Projects using energy modeling predict an average of 16 percentage points more energy reduction.

Increasingly stringent codes are the driver for improvement for non-modeled projects.

Modeling = better performance
Despite a decrease in the average use of energy modeling in 2016, the overall pEUI % reduction improved. This reflects the role of more stringent energy codes.

A focus of our work moving forward is understanding the barriers to modeling, strategies and tools for overcoming them, and continuing to support and advocate for adoption of more stringent energy codes.
What you can do

Take a step forward

If you haven’t already, [join the 2030 Commitment](https://www.aia2030.org/commitment).

Explore the AIA•2030 Online Series on [AIA](https://www.aia2030.org).

Track your firm’s progress toward 2030 carbon neutral goals with the DDx [DDx help page](https://www.ddx.aia2030.org).

Use energy modeling as well as resources in the DDx.
As signatories our firm is much more efficient and we have happier clients. The DDx allows us to take advantage of a robust set of data to enhance and inspire our design processes and focus our time and efforts in the areas that will best serve our clients.

Stacey White, AIA, LEED AP BD + C, Principal and Owner, mode associates, a boutique firm in San Luis Obispo, CA
Acknowledgments

2030 Commitment working group
Co-chairs
Greg Mella, FAIA - SmithGroupJJR
Heather Holdridge, Assoc. AIA – Lake | Flato Architects
Amy Leedham, AIA – Atelier Ten
Andrea Love, AIA – Payette Associates
Ashley Mulhall, AIA - orcutt | winslow
Barbara Batshalom - Sustainable Performance Institute
Gwen Fuertes, AIA - Leddy Maytum Stacy Architects
Nathan Kipnis, FAIA – Kipnis Architecture + Planning
Paul Porrier, AIA – Paul Porrier + Associates Architects
Rand Ekman, AIA - HKS Inc.
Stacey White, AIA - mode associates
Tate Walker, AIA – OPN Architects

Partner organizations
Amir Roth - US Department of Energy
Erin McDade - Architecture 2030
Karen Butler - US Environmental Protection Agency
Lawrence Berkeley National Laboratory
Vincent Martinez – Architecture 2030

AIA Staff & consulting
Julia Siple, AIA
Kevin Settlemyre – Sustainable IQ
Melissa Smith Nilles – 5th Estate
Melissa Wackerle
Michele Russo
Praveen Patel
Scott Ward - 5th Estate

Graphic design
Daimon Caulk

Photo credits
Projects featured in this report are winners of the 2017 COTE Top Ten design awards. For more information visit the website at www.aia.org/cotetopten

Discovery Elementary School (cover image)
Photograph by Alan Karchmer courtesy of VMDO Architects

Brock Environmental Center (page 2 & 9)
Photographs by Prakash Patel courtesy of SmithGroupJJR

Chatham University Eden Hall Campus (page 3)
Photography by Bruce Damonte courtesy of Mithun

Bristol Community College John J. Sbrega Health and Science Building (page 11 & 17)
Photography by Edward Caruso courtesy of Sasaki

R.W. Kern Center (page 15)
Photography by Robert Benson Photography courtesy of Bruner/Cott & Associates

Stanford University Central Energy Facility (page 8 & 20)
Photography by © Robert Canfield courtesy of ZGF Architects (page 8)
Photography by © Matthew Anderson courtesy of ZGF Architects (page 20)